
JAWAHARLAL COLLEGE OF ENGINEERING AND TECHNOLOGY
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological

University, Kerala)
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

(NBA Accredited)

COURSE MATERIAL

EST 102 PROGRAMMING IN C

VISION OF THE INSTITUTION
Emerge as a centre of excellence for professional education to produce high quality engineers and
entrepreneurs for the development of the region and the Nation

MISSION OF THE INSTITUTION

• To become an ultimate destination for acquiring latest and advanced knowledge in the

multidisciplinary domains.

• To provide high quality education in engineering and technology through innovative
teaching-learning practices, research and consultancy, embedded with professional
ethics.

• To promote intellectual curiosity and thirst for acquiring knowledge through outcome
based education.

• To have partnership with industry and reputed institutions to enhance the employability
skills of the students and pedagogical pursuits.

• To leverage technologies to solve the real life societal problems through community
services.

ABOUT THE DEPARTMENT

 Established in: 2008

 Courses offered: B.Tech in Computer Science and Engineering

 Affiliated to the A P J Abdul Kalam Technological University.

DEPARTMENT VISION
To produce competent professionals with research and innovative skills, by providing them with
the most conducive environment for quality academic and research oriented undergraduate
education along with moral values committed to build a vibrant nation.

DEPARTMENT MISSION

• Provide a learning environment to develop creativity and problem solving skills in a

professional manner.

• Expose to latest technologies and tools used in the field of computer science.

• Provide a platform to explore the industries to understand the work culture and
expectation of an organization.

• Enhance Industry Institute Interaction program to develop the entrepreneurship skills.

• Develop research interest among students which will impart a better life for the society
and the nation.

PROGRAMME EDUCATIONAL OBJECTIVES
Graduates will be able to

• Provide high-quality knowledge in computer science and engineering required for a

computer professional to identify and solve problems in various application domains.

• Persist with the ability in innovative ideas in computer support systems and transmit the
knowledge and skills for research and advanced learning.

• Manifest the motivational capabilities, and turn on a social and economic commitment to
community services.

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of mathematics,
natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate consideration

for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of the
information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities with
an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the
professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for
sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms
of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and receive clear
instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and leader
in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

Course Outcomes: After the completion of the course the student will be able to

CO 1

Analyze a computational problem and develop an algorithm/flowchart to find its solution

CO 2

Develop readable* C programs with branching and looping statements, which uses
Arithmetic, Logical, Relational or Bitwise operators.

CO 3

Write readable C programs with arrays, structure or union for storing the data to be
processed

CO 4
Divide a given computational problem into a number of modules and develop a readable
multi-function C program by using recursion if required, to find the solution to the
computational problem

CO 5

Write readable C programs which use pointers for array processing and parameter passing

CO 6 Develop readable C programs with files for reading input and storing output

readable* - readability of a program
1. Logic used is easy to follow
2. Standards to be followed for
3. Meaningful names are given
4. Concise comments are provided

PROGRAM SPECIFIC OUTCOMES
The students will be able to

• Use fundamental knowledge

methods, data structure and

• Interpret the basic concepts
specifications to provide

• Apply theoretical and practical
design new ideas and innovations

Prerequisite: NIL

 PO1 PO2 PO3 PO4

CO1

CO2

CO3

CO4

CO5

CO6

Assessment Pattern

Bloom’s Category

Remember

Understand

Apply

Analyse

program means the following:

for indentation and formatting
 to variables

provided wherever needed

OUTCOMES (PSO)

knowledge of mathematics to solve problems using
and algorithms.

concepts and methods of computer systems and technical
provide accurate solutions.

practical proficiency with a wide area of programming
innovations towards research.

PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11

Continuous Assessment Tests
End Semester

ExaminationTest 1
(Marks)

Test 2
(Marks)

15 10 25

10 15 25

20 20 40

5 5 10

suitable analysis

technical

of programming knowledge,

PO11 PO12

End Semester
Examination Marks

25

25

40

10

Evaluate

Create

Mark distribution

Total Marks CIE

Marks

ESE

Marks

ESE Duration

150 50 100 3 hours

Attendance : 10 marks

Continuous Assessment Test 1 (for theory, for 2 hrs) : 20 marks

Continuous Assessment Test 2 (for lab, internal examination, for 2 hrs) : 20 marks

Internal Examination Pattern: There will be two parts; Part A and Part B. Part A contains 5 questions
with 2 questions from each module (2.5 modules x 2 = 5), having 3 marks for each question. Students
should answer all questions. Part B also contains 5 questions with 2 questions from each module (2.5
modules x 2 = 5), of which a student should answer any one. The questions should not have sub-
divisions and each one carries 7 marks.

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A contains 10
questions with 2 questions from each module, having 3 marks for each question. Students should
answer all questions. Part B contains 2 questions from each module of which a student should answer
any one. Each question can have maximum 2 sub-divisions and carry 14 marks.

Sample Course Level Assessment Questions

Course Outcome 1 (CO1): Write an algorithm to check whether largest of 3 natural numbers is prime or
not. Also, draw a flowchart for solving the same problem.

Course Outcome 2 (CO2): Write an easy to read C program to process a set of n natural numbers and to
find the largest even number and smallest odd number from the given set of numbers. The program
should not use division and modulus operators.

Course Outcome 3(CO3):Write an easy to read C program to process the marks obtained by n students
of a class and prepare their rank list based on the sum of the marks obtained. There are 3 subjects for
which examinations are conducted and the third subject is an elective where a student is allowed to
take any one of the two courses offered.

Course Outcome 4 (CO4): Write an easy to read C program to find the value of a mathematical function
f which is defined as follows. f(n) = n! / (sum of factors of n), if n is not prime and f(n) = n! / (sum of
digits of n), if n is prime.

Course Outcome 5 (CO5): Write an easy to read C program to sort a set of n integers and to find the
number of unique numbers and the number of repeated numbers in the given set of numbers. Use a
function which takes an integer array of n elements, sorts the array using the Bubble Sorting Technique
and returns the number of unique numbers and the number of repeated numbers in the given array.

Course Outcome 6 (CO6): Write an easy to read C program to process a text file and to print the
Palindrome words into an output file.

Model Question paper

QP CODE: PAGES:3

Reg No:

Name :

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION,
MONTH & YEAR

Course Code: EST 102

Course Name: Programming in C (Common to all programs)

Max.Marks:100 Duration: 3 Hours

PART A

Answer all Questions. Each question carries 3 Marks

1. Write short note on processor and memory in a computer.
2. What are the differences between compiled and interpreted languages? Give example for

each.
3. Write a C program to read a Natural Number through keyboard and to display the reverse

of the given number. For example, if “3214567” is given as input, the output to be shown is
“7654123”.

4. Is it advisable to use goto statements in a C program? Justify your answer.
5. Explain the different ways in which you can declare & initialize a single dimensional array.
6. Write a C program to read a sentence through keyboard and to display the count of white

spaces in the given sentence.
7. What are the advantages of using functions in a program?
8. With a simple example program, explain scope and life time of variables in C.
9. Write a function in C which takes the address of a single dimensional array (containing a

finite sequence of numbers) and the number of numbers stored in the array as arguments
and stores the numbers in the same array in reverse order. Use pointers to access the
elements of the array.

10. With an example, explain the different modes of opening a file. (10x3=30)

Part B
Answer any one Question from each module. Each question carries 14 Marks

11. (a) Draw a flow chart to find the position of an element in a given sequence, using linear

searching technique. With an example explain how the flowchart finds the position of a
given element. (10)
(b) Write a pseudo code representing the flowchart for linear searching. (4)

OR
12. (a) With the help of a flow chart, explain the bubble sort operation. Illustrate with an

example. (10)
(b) Write an algorithm representing the flowchart for bubble sort. (4)

13. (a) Write a C program to read an English Alphabet through keyboard and display whether

the given Alphabet is in upper case or lower case. (6)
(b) Explain how one can use the builtin function in C, scanfto read values of different data
types. Also explain using examples how one can use the builtin function in C, printffor text
formatting. (8)

OR

14. (a) With suitable examples, explain various operators in C. (10)
(b) Explain how characters are stored and processed in C. (4)

15. (a) Write a function in C which takes a 2-Dimensional array storing a matrix of numbers and

the order of the matrix (number of rows and columns) as arguments and displays the sum
of the elements stored in each row. (6)
(b) Write a C program to check whether a given matrix is a diagonal matrix. (8)

OR

16. (a) Without using any builtin string processing function like strlen, strcat etc., write a
program to concatenate two strings. (8)
(b) Write a C program to perform bubble sort. (6)

17. (a) Write a function namely myFact in C to find the factorial of a given number. Also, write

another function in C namelynCr which accepts two positive integer parameters n and r and
returns the value of the mathematical functionC(n,r)(n! / (r! x (n - r)!)). The function nCr is
expected to make use of the factorial function myFact. (10)
(b) What is recursion? Give an example. (4)

OR

18. (a) With a suitable example, explain the differences between a structure and a union in C.

(6)
(b) Declare a structure namely Student to store the details (roll number, name, mark_for_C)
of a student. Then, write a program in C to find the average mark obtained by the students
in a class for the subject Programming in C (using the field mark_for_C). Use array of
structures to store the required data (8)

19. (a) With a suitable example, explain the concept of pass by reference. (6)

(b) With a suitable example, explain how pointers can help in changing the content of a
single dimensionally array passed as an argument to a function in C.

(8)

OR

20. (a) Differentiate between sequential files and random access files? (4)
(b) Using the prototypes explain the functionality provided by the following functions. (10)

rewind()
i. fseek()

ii. ftell()

iii. fread()

iv. fwrite() (14X5=70)

SYLLABUS
Programming in C (Common to all disciplines)

Module 1

Basics of Computer Hardware and Software
Basics of Computer Architecture: processor, Memory, Input& Output devices
Application Software & System software: Compilers, interpreters, High level and low level languages
Introduction to structured approach to programming, Flow chart Algorithms, Pseudo code (bubble
sort, linear search - algorithms and pseudocode)

Module 2
Program Basics

Basic structure of C program: Character set, Tokens, Identifiers in C, Variables and Data Types ,
Constants, Console IO Operations, printf and scanf
Operators and Expressions: Expressions and Arithmetic Operators, Relational and Logical Operators,
Conditional operator, size of operator, Assignment operators and Bitwise Operators. Operators
Precedence
Control Flow Statements: If Statement, Switch Statement, Unconditional Branching using goto
statement, While Loop, Do While Loop, For Loop, Break and Continue statements.(Simple programs
covering control flow)

Module 3
Arrays and strings

Arrays Declaration and Initialization, 1-Dimensional Array, 2-Dimensional Array
String processing: In built String handling functions (strlen, strcpy, strcat and strcmp, puts, gets)
Linear search program, bubble sort program, simple programs covering arrays and strings

Module 4
Working with functions

Introduction to modular programming, writing functions, formal parameters, actual parameters
Pass by Value, Recursion, Arrays as Function Parameters structure, union, Storage Classes, Scope
and life time of variables, simple programs using functions

Module 5
Pointers and Files
Basics of Pointer: declaring pointers, accessing data though pointers, NULL pointer,array access
using pointers, pass by reference effect
File Operations: open, close, read, write, append
Sequential access and random access to files: In built file handlingfunctions (rewind() ,fseek(), ftell(),
feof(), fread(), fwrite()), simple programs covering pointers and files.

Text Books
1. Schaum Series, Gottfried B.S.,Tata McGraw Hill,Programming with C
2. E. Balagurusamy, Mcgraw Hill,Programming in ANSI C
3. Asok N Kamthane, Pearson,Programming in C
4. Anita Goel, Pearson, Computer Fundamentals

Reference Books
1. Anita Goel and Ajay Mittal, Pearson, Computer fundamentals and Programming in C
2. Brian W. Kernighan and Dennis M. Ritchie, Pearson, C Programming Language
3. Rajaraman V, PHI, Computer Basics and Programming in C
4. Yashavant P, Kanetkar, BPB Publications, Let us C

Course Contents and Lecture Schedule

Module 1: Basics of Computer Hardware and Software (7 hours)

1.1

Basics of Computer Architecture: Processor, Memory, Input& Output devices

2 hours

1.2

Application Software & System software: Compilers, interpreters, High level
and low level languages

2 hours

1.3 Introduction to structured approach to programming, Flow chart 1 hours

1.4

Algorithms, Pseudo
pseudocode)

Code (bubble sort, linear search - algorithms and
2 hours

Module 2: Program Basics (8 hours)

2.1

Basic structure of C program: Character set, Tokens, Identifiers in C, Variables
and Data Types , Constants, Console IO Operations, printf and scanf

2 hours

2.2
Operators and Expressions: Expressions and Arithmetic Operators, Relational
and Logical Operators, Conditional operator, sizeof operator, Assignment
operators and Bitwise Operators. Operators Precedence

2 hours

2.3

Control Flow Statements: If Statement, Switch Statement, Unconditional
Branching using goto statement, While Loop, Do While Loop, For Loop, Break
and Continue statements.(Simple programs covering control flow)

4 hours

Module 3: Arrays and strings:

(6 hours)

3.1

Arrays Declaration and Initialization, 1-Dimensional Array, 2-Dimensional Array

2 hours

3.2

String processing: In built String handling functions(strlen, strcpy, strcat and
strcmp, puts, gets)

2 hours

3.3

Linear search program, bubble sort program, simple programs covering arrays
and strings

3 hours

Module 4: Working with functions (7 hours)

4.1 Introduction to modular programming, writing functions, formal parameters,
actual parameters

2 hours

4.2 Pass by Value, Recursion, Arrays as Function Parameters 2 hours

4.3 structure, union, Storage Classes,Scope and life time of variables, simple
programs using functions

3 hours

Module 5: Pointers and Files (7 hours)

5.1 Basics of Pointer: declaring pointers, accessing data though pointers, NULL
pointer,array access using pointers, pass by reference effect

3 hours

5.2 File Operations: open, close, read, write, append 1 hours

5.3

Sequential access and random access to files: In built file handlingfunctions
(rewind() ,fseek(), ftell(), feof(), fread(), fwrite()), simple programs covering
pointers and files.

2 hours

C PROGRAMMING LAB (Practical part of EST 102, Programming in C)
Assessment Method: The Academic Assessment for the Programming lab should be done internally
by the College. The assessment shall be made on 50 marks and the mark is divided as follows:
Practical Records/Outputs - 20 marks (internal by the College), Regular Lab Viva - 5 marks (internal
by the College), Final Practical Exam – 25 marks (internal by the College).

The mark obtained out of 50 will be converted into equivalent proportion out of 20 for CIE
computation.

LIST OF LAB EXPERIMENTS
1. Familiarization of Hardware Components of a Computer
2. Familiarization of Linux environment – How to do Programming in C with Linux
3. Familiarization of console I/O and operators in C

i) Display “Hello World”
ii) Read two numbers, add them and display theirsum
iii) Read the radius of a circle, calculate its area and display it
iv) Evaluate the arithmetic expression ((a -b / c * d + e) * (f +g)) and display its solution.Read

the values of the variables from the user through console.

4. Read 3 integer values and find the largest amoung them.
5. Read a Natural Number and check whether the number is prime or not
6. Read a Natural Number and check whether the number is Armstrong or not
7. Read n integers, store them in an array and find their sum and average
8. Read n integers, store them in an array and search for an element in the

array using an algorithm for Linear Search
9. Read n integers, store them in an array and sort the elements in the array using Bubble Sort

algorithm
10. Read a string (word), store it in an array and check whether it is a palindrome word or not.

11.Read two strings (each one ending with a $ symbol), store them in
arrays and concatenate them without using library functions.

12. Read a string (ending with a $ symbol), store it in an array and count the number of vowels,
consonants and spaces in it.

13. Read two input each representing the distances between two points in the Euclidean space,
store these in structure variables and add the two distance values.
14. Using structure, read and print data of n employees (Name, Employee Id and Salary)

15. Declare a union containing 5 string variables (Name, House Name, City Name, State and Pin
code) each with a length of C_SIZE (user defined constant). Then, read and display the address of a
person using a variable of the union.
16. Find the factorial of a given Natural Number n usingrecursive and non recursive functions

17. Read a string (word), store it in an array and obtain its reverse by using a user defined function.
18. Write a menu driven program for performing matrix addition, multiplication and finding the
transpose. Use functions to (i) read a matrix, (ii) find the sum of two matrices, (iii) find the product
of two matrices, (i) find the transpose of a matrix and (v) display a matrix.
19. Do the following using pointers

i) add two numbers
ii) swap two numbers using a user defined function

20. Input and Print the elements of an array using pointers
21. Compute sum of the elements stored in an array using pointers and user defined function.
22. Create a file and perform the following

iii) Write data to the file
iv) Read the data in a given file & display the file content on console
v) append new data and display on console

23. Open a text input file and count number of characters, words and lines in it; and store the results
in an output file.

EST 102
PROGRAMMING IN C

MODULE 1

BASICS OF COMPUTER

HARDWARE &
SOFTWARE

BASICS OF
COMPUTER
ARCHITECTURE

■ Computer is an electronic machine that makes
performing any task very easy

■ In computer, CPU executes each instruction provided toit, in
a series of steps, this series of steps is called Machine Cycle,
and is repeated for each instruction

■ One machine cycle involves

• Fetching of instruction

• Decoding the instruction

• Operand fetching

• Executing the instruction

BASICS OF

COMPUTER
ARCHITECTURE
■ Computer system has five basic units that help

computer to perform operations, which are given
below:

1. Input Unit

2. Output Unit

3. Storage Unit

4. Arithmetic Logic Unit

5. Control Unit

Basic Units of Computer System

Input Unit

■ Input unit connects external environment with
internal computer system

■ It provides data and instructions to computer
system

■ Commonly used input devices are keyboard,
mouse, magnetic tape etc.

■ Input unit performs following tasks:

• Accept data and instructions from outside
environment

• Convert it into machine language

• Supply the converted data to computer system

Output Unit

■ It connects internal system of a computer toexternal
environment

■ It provides results of any computation, or
instructions to outside world

■ Some output devices are printers, monitor etc.

Storage Unit

■ This unit holds data and instructions
■ It also stores intermediate results before theseare

sent to output devices

■ It also stores data for later use
■ Storage unit of a computer system can be dividedinto

two categories:
1. Primary Storage

2. Secondary Storage

Primary Storage

■ Primary memory is computer memory that is accessed
directly by CPU

■ RAM and ROM is used as primary storage memory
■ RAM(Random Access Memory) memory is used to store

data which is being currently executed

■ It is used for temporary storage of data and data is lost,
when computer is switched off

■ ROM(Read Only Memory) Stores crucial information
essential to operate system, like program essential to boot
computer

■ ROM Always retains its data

Secondary Storage

■ Every computer also has storage device that’sused
for storing information on a long-term basis, and is
known as secondary storage

■ Any file you create or download is saved to
computer’s secondary storage

■ There are two types of storage device used as
secondary storage in computers:
1. HDD (Hard Disk Drive)
2. SSD (Solid-State Drive)

■ HDDs are more traditional of two, SSDs are fast
overtaking HDD as preferred one for secondary
storage

SSD

■ An SSD is a storage medium that uses non-volatile
memory to hold and access data

■ Unlike a hard drive, an SSD has no moving parts
■ Advantages

1. faster access time

2. noiseless operation

3. higher reliability

4. lower power consumption

HDD

□ A hard disk drive (sometimes abbreviated as a hard drive,
HD,or HDD) is a non-volatile data storage device

□ It is usually installed internally in a computer, attached
directly to disk controller of computer'smotherboard

Arithmetic Logical Unit (ALU)

■ All calculations are performed in ALU of computer
system

■ ALU can perform basic operations such as
addition, subtraction, division, multiplication etc.

■ Whenever calculations are required, control unit
transfers data from storage unit to ALU

■ When the operations are done, result is
transferred back to the storage unit

Control Unit (CU)

■ It controls all other units of the computer.
■ It controls the flow of data and instructions toand

from storage unit to ALU

■ Thus it is also known as central nervous systemof
computer

CPU- CENTRAL PROCESSING

UNIT
■ A processor is an integrated electronic circuitthat

performs calculations that run a computer
■ Known as brain of computer
■ A processor performs arithmetical, logical,

input/output (I/O) and other basic instructions that are
passed from an operating system (OS)

■ Most other processes are dependent on operations of
a processor

■ Terms processor, CPU and microprocessor are
commonly linked

CPU

CPU

■ Processors can be found in PCs, smartphones,
tablets and other computers

■ Two main competitors in the processor marketare
Intel and AMD

■ It performs following tasks:
• It performs all operations

• It takes all decisions

• It controls all units of computer

CPU

■ Executing a single instruction consists of a particular
cycle of events; fetching, decoding, executing and
storing

■ For example, to do add instruction CPU must

1. Fetch : get instruction from memory into
processor

2. Decode : internally decode what it has to do(Eg:
add)

3. Execute : take values from registers, actuallyadd
them together

4. Store: store result back into another register

CPU

■ Basic elements of a processor include:

1) Arithmetic Logic Unit (ALU)-which carries out
arithmetic and logic operations on operands in
instructions

2) Floating Point Unit (FPU)-also known as a math
coprocessor that is designed to carry out operations
on floating-point numbers

3) Registers-which hold instructions and other data.
Registers supply operands to ALU and store results
of operations

4) Cache memory-Their inclusion in CPU saves time
compared to having to get data from RAM

Motherboard

TYPES OF MEMORY

■ Memory is the most essential element of a computing
system

■ Without it computer can't perform simple tasks
■ Computer memory is of two basic type - Primary

memory(RAM and ROM) and Secondary
memory(hard drive, CD, etc.).

■ Random Access Memory (RAM) is primary- volatile
memory

■ Read Only Memory (ROM) is primary-non-
volatile memory

TYPES OF MEMORY

RAM - Random Access Memory

■ Term RAM is short for Random Access Memory

■ RAM is where data computer is working on while
computer is running

■ Program is also loaded into RAM before being
executed

■ Both program and data is stored in RAM while
program is being executed

RAM

■ RAM is typically cleared whenever computer isreset or
shutdown

■ Thus, data stored in RAM does not survive
computer restarts

■ Two types

1. Static RAM(SRAM)
2. Dynamic RAM(DRAM)

DRAM AND SRAM

ROM - Read Only Memory

■ Stores crucial information essential to operate
system, like program essential to boot computer

■ It is not volatile.
■ Always retains its data.

■ Used in embedded systems
■ Used in calculators and peripheral devices

■ ROM is further classified into 4 types - ROM,
PROM, EPROM, and EEPROM

Types of ROM

□ PROM (Programmable read-only memory) - It can be
programmed by user. Once programmed, data and
instructions in it cannot be changed

□ EPROM (Erasable Programmable read only memory) -
It can be reprogrammed. To erase datafrom it, expose it
to ultra violet light. To reprogram it, erase all previous
data

□ EEPROM (Electrically erasable programmable read
only memory) -Data can be erased by applying electric
field, no need of ultra violet light. We can erase only
portions of the chip

INPUT OUTPUT DEVICES

■ An input device sends information to a computer
system for processing, and an output device
reproduces or displays the results of that processing

■ Input devices only allow for input of data to computer

■ Devices are only input devices or output devices, as
they can only accept data input from a user or
output data generated by a computer

■ Some devices can accept input and display output,
and they are referred to as I/O devices (input/output
devices)

Input devices

■ An input device can send data to another device,but it
cannot receive data from another device

■ Examples of input devices include following.

❑ Keyboard and Mouse - Accepts input from a user
and sends that data to computer

❑ Microphone - Receives sound generated by an
input source, and sends that sound to a computer

❑ Webcam - Receives images generated by whatever
it is pointed at and sends those images to a
computer

Output devices

□ An output device can receive data from another device
and generate output with that data, but it cannot send data
to another device

□ Examples of output devices include following

❑ Monitor - Receives data from a computer and displays
that information as text and images for users to view

❑ Projector - Receives data from a computer and
displays, or projects, that information as text and
images onto a surface, like a wall or a screen

❑ Speakers - Receives sound data from a computer and
plays sounds for users to hear

Input/output devices

■ An input/output device can receive data from a device
(input), and send data to another device(output)

■ Examples of input/output devices include the
following.

■ CD-RW drive and DVD-RW drive - Receives data
from a computer (input), to copy onto a writable CD
or DVD. Also, drive sends data contained ona CD or
DVD (output) to a computer

■ USB flash drive - Receives, or saves, data from a
computer (input).Also, drive sends data to acomputer
or another device (output).

SOFTWARES

■ Software is a collection of instructions that enable user
to interact with a computer , its hardware or perform
tasks

■ Without software, most computers would beuseless

■ For example, without your Internet browser software,
you could not surf Internet

■ Without an operating system, the browser could not
run on your computer

SOFTWARES

■ There are two types of software

1. System Software

2. Application Software

■ Examples of system software are Operating System,
Compilers, Interpreter, Assemblers, etc.

■ Examples of Application software are Railways
Reservation Software, Microsoft Office Suite Software,
Microsoft Word, Microsoft PowerPoint , etc.

SOFTWARES

APPLICATION SOFTWARE

□ These are basic software used to run to accomplisha
particular action and task

□ These are dedicated software, dedicated to
performing simple and single tasks

□ For eg., a single software cannot serve to both
reservation system and banking system

□ These are divided into two types:

1. General Purpose Application Software
2. Specific Purpose Application Software

General Purpose Application

Software
■ These are types of application software that comes in-

built and ready to use, manufactured by some company
or someone

■ Examples are:

❑ Microsoft Excel – Used to prepare excel sheets

❑ VLC Media Player – Used to play audio/video files

❑ Adobe Photoshop – Used for designing and
animation and many more

Specific Purpose Application
Software

■ These are the type of software that is customizable and
mostly used in real-time or business environment

■ Examples are:

❑ Ticket Reservation System
❑ Healthcare Management System
❑ Hotel Management System
❑ Payroll Management System

SYSTEM SOFTWARES

■ Systems software includes programs that are dedicated
to managing computer itself, such as the operating
system and disk operating system (or DOS)

■ System software is a software that provides platform to
other software's

■ Some examples can be operating systems, antivirus
software, disk formatting software, Computer language
translators etc.

SYSTEM SOFTWARES

■ These are commonly prepared by computer
manufacturers

■ These software's consists of programs written in low-
level languages, used to interact with hardware at a
very basic level

■ System software serves as interface between hardware
and end users

■ Important features of system software include:

■ 1. Closeness to system
■ 2. Fast speed

■ 3. Difficult to manipulate and design
■ 4. Written in low level language

OPERATING SYSTEM

■ An operating system (OS) is a type of system software
that manages computer's hardware and software
resources

■ It provides common services for computer programs

■ OS acts a link between software and hardware

■ It controls and keeps a record of execution of all other
programs that are present in computer, including
application programs and other system software

OPERATING SYSTEM

COMPILER

□ A compiler is a computer program which transforms
source code written in a high-level language into low-
level machine language

□ A compiler is a software that translates code written in
one programming language (source language) to another
language (target language) without changing meaning of
program

□ Compiler is also said to make target code efficient and
optimized in terms of time and space

□ Examples of compiler may include gcc (C compiler), g++
(C++ Compiler), javac (Java Compiler) etc.

COMPILER

INTERPRETER

■ An interpreter, like a compiler, translates high- level
language into low-level machine language

■ A compiler reads whole source code at once and
generates machine code

■ An interpreter reads a statement or one line from source
code, converts it to a machine code, then takes next
statement in sequence

■ If an error occurs, an interpreter stops execution and
reports it

■ A compiler reads whole program even if it encounters
several errors

■ Examples may include Ruby, Python, PHP etc.

INTERPRETER

INTERPRETER

ASSEMBLER

■ An assembler is a program that converts assembly
language into machine code

■ Assemblers produce executable code that similar to
compilers

■ However, assemblers are more simplistic since they
only convert low-level code (assemblylanguage) to
machine code

ASSEMBLER

COMPUTER LANGUAGES

Low-level language

■ It is represented in 0 or 1 forms, which aremachine
instructions

■ Languages that come under this category areMachine
level language and Assembly language

Machine-level language

□ Machine-level language is a language that consists of a
set of instructions that are in binary form 0 or 1

□ Computers can understand only machine instructions,
which are in binary digits, i.e., 0 and 1

□ Instructions given to computer can be only in binarycode

□ Creating a program in a machine-level language is avery
difficult task as it is not easy for programmers to write
program in machine instructions

Machine-level language

■ It is error-prone as it is not easy to understand, and its
maintenance is also very high

■ A machine-level language is not portable as each
computer has its machine instructions, so if we write a
program in one computer will no longer be valid in
another computer

Assembly Language

■ Assembly language contains some human-readable
commands such as mov, add, sub, etc.

■ Problems which we were facing in machine-level
language are reduced to some extent by using an
extended form of machine-level language known as
assembly language

■ Since assembly language instructions are written in
English words like mov, add, sub, so it is easier to write
and understand

Assembly Language

□ As we know that computers can only understand the
machine-level instructions, so we require a translator that
converts the assembly code into machine code

□ Translator used for translating the code is known as an
assembler

□ Assembly language code is not portable

□ Assembly code is not faster than machine code because
assembly language comes above the machine language in
hierarchy

High-Level Language

■ High-level language is a programming language that
allows a programmer to write programs which are
independent of a particular type of computer

■ High-level languages are considered as high-level
because they are closer to human languages than
machine-level languages

■ A compiler is required to translate a high-level language
into a low-level language

■ Examples of high level languages are C, C++, Java,
Python, etc.

Advantages of high-level languages
□ High-level language programs are easy to get developed

□ It is easy to visualize function of program

□ Programmer may not remain aware about architecture of
hardware

□ So people without hardware knowledge can also dohigh
level language programming.

□ Same high level language program may works on
different computers, so high-level languages areportable

Disadvantages of high-level

languages
■ A high level language program can't get executed

directly
■ It requires some translator to get it translated to machine

language

■ There are two types of translators for high level
language programs. They are interpreter and compiler

■ These translator programs, especially compilers, are
huge one and so are quite expensive

Difference Between High Level

and Low Level Languages

STRUCTURED PROGRAMMING

■ A programming approach in which program ismade as
a single structure

■ Also called as modular programming

■ It means that code will execute instruction by
instruction one after other

■ It doesn't support possibility of jumping from one
instruction to some other with help of any statement
like GOTO, etc.

■ Therefore, instructions in this approach will be
executed in a serial and structured manner

■ Languages that support Structured programming
approach are: C, C++, JAVA, C# etc

STRUCTURED PROGRAMMING

■ Structured program mainly consists of threetypes of
elements:

❑ Selection Statements

❑ Sequence Statements

❑ Iteration Statements
■ Structured program consists of well-structuredand

separated modules
■ But entry and exit in a structured program is a

single time event

STRUCTURED PROGRAMMING

■ Structured programming is a type of programmingthat
involves breaking the program into smaller modules of
code

■ Modules have a duty of performing a single task

■ It means that program uses single-entry andsingle-
exit elements

■ Therefore a structured program is well
maintained, neat and clean program

■ This is reason why the Structured Programming
Approach is well accepted in programming world

■ Mechanisms that allow us to control flow of
execution are called control structures

STRUCTURED PROGRAMMING

■ There are three main categories of controlstructures

❑ Sequence - Simply do one instruction then next and
next.

❑ Selection or decision - This is where you select or
choose between two or more flows. Choice is decided
by asking some sort of question. Answer determines
which lines of code will be executed

❑ Iteration or loop - Also known as repetition, it allows
some code to be executed (or repeated) several times

STRUCTURED PROGRAMMING

Advantages of Structured
Programming Approach

■ Easier to read and understand

■ User Friendly
■ Easier to Maintain

■ Mainly problem based instead of being machine
based

■ Development is easier as it requires less effortand
time

■ Easier to Debug
■ Machine-Independent, mostly

Disadvantages of Structured
Programming Approach

■ Since it is Machine-Independent, So it takes time to
convert into machine code.

■ Converted machine code is not same as for
assembly language

■ Program depends upon changeable factors likedata-
types

■ Therefore it needs to be updated with need on go
■ Usually development in this approach takes longertime

as it is language-dependent

■ In case of assembly language, development takeslesser
time as it is fixed for machine

ALGORITHM & FLOWCHART

■ Algorithm is list of instructions and rules that a
computer needs to do to complete a task

■ Algorithm is a step by step procedure, to solve a
problem

■ Flow chart is a graphical representation of an
algorithm

■ It is a program-planning tool to solve a problem
■ It makes use of symbols which are connected among

them to indicate flow of information and processing

■ Process of drawing a flowchart for an algorithm is
known as flowcharting

ALGORITHM & FLOWCHART

ALGORITHM & FLOWCHART

■ Algorithm has following characteristics

• Input: An algorithm may or may not require input

• Output: Each algorithm is expected to produce atleast
one result

• Definiteness: Each instruction must be clear and
unambiguous

• Finiteness: Algorithm should terminate after finite
number of steps

■ Flowchart is diagrammatic/Graphical representationof
sequence of steps to solve a problem

FLOWCHART SYMBOLS

Algorithm and flowchart to

Buy a Pen

Algorithm & Flowchart to find sumof
two numbers

Algorithm
■ Step-1 Start

■ Step-2 Input first number say A
■ Step-3 Input second number say B
■ Step-4 SUM = A+B

■ Step-5 Display SUM

■ Step-6 Stop

Flowchart

Algorithm & Flowchart to find Area
and Perimeter of Circle

Algorithm
Step-1 Start
Step-2 Input Radius of Circle say R
Step-3 AREA= 3.142*R*R
Step-4 CIRCUM= 2*3.142*R

Step-5 Display AREA,
CIRCUMStep-6 Stop

Flowchart for Arithmetic Operation

Flowchart to find

Largest of two numbers

Flowchart to find

Largest of three numbers

Flowchart to check whether a
number is odd or even

PSEUDO CODE

■ It's simply an implementation of an algorithm in form
of annotations and informative text written in plain
English

■ It has no syntax like any of programminglanguage
and thus can't be compiled or interpreted by computer

■ It's the cooked up representation of an algorithm

■ Pseudo code, as name suggests, is a false code or a
representation of code which can be understood by
person with some school level programming knowledge

Advantages of Pseudo code

■ Improves readability of any approach. It's one of best
approaches to start implementation of analgorithm

■ Acts as a bridge between program and algorithm or
flowchart

■ Also works as a rough documentation, so program of
one developer can be understood easily when a pseudo
code is written out

■ Easier bug(error) detection and fixing

Advantages of Pseudo code

■ In industries, approach of documentation is essential.
And that's where a pseudo-code proves vital

■ Main goal of a pseudo code is to explain what exactly
each line of a program should do, hence making code
construction phase easier for programmer

Disadvantages of Pseudo code

■ Pseudo code does not provide a visual representation
of logic of programming

■ There are no proper format for writing pseudo code

■ In Pseudo code there is extra need of maintain
documentation

■ In Pseudo code there is no proper standard, many
companies follow their own standard for writing the
pseudo code

ALGORITHM V/S PSEUDOCODE

ALGORITHM V/S PSEUDOCODE

LINEAR SEARCH

■ Linear search is simplest search algorithm and often
called sequential search

■ In this type of searching, we simply traverse list
completely and match each element of list with item
whose location is to be found

■ If match found then location of item is returned
otherwise algorithm return NULL

LINEAR SEARCH

LINEAR SEARCH EXAMPLE

LINEAR SEARCH EXAMPLE

LINEAR SEARCH EXAMPLE

ALGORITHM – LINEAR SEARCH

Linear Search (Array A, Value x)
Step 1: Set i to 0
Step 2: if i = n then go to step 7 Step 3:
if A[i] = x then go to step 6Step 4: Set
i to i+1
Step 5: Go to Step 2
Step 6: Print Element x Found at index i and go tostep

8

Step 7: Print element not foundStep 8:
Stop

PSEUDOCODE – LINEAR SEARCH

Begin

for i = 0 to (n - 1) doif
(A[i] = x) then

Print x Found at index i
Exit

end if
else

i=i+1

endfor
Print x not Found”

End

BUBBLE SORT

■ Sorting refers to ordering data in an increasing or
decreasing fashion according to some linearrelationship
among data items

■ Bubble sort is a simple sorting algorithm

■ This sorting algorithm is comparison-basedalgorithm in
which each pair of adjacent elements is compared and
the elements are swapped if they are not in order

■ This algorithm is not suitable for large data sets as its
average and worst case complexity are of O(n²) where n
is the number of items

BUBBLE SORT

■ If given array has to be sorted in ascending order, then
bubble sort will start by comparing first element of array
with second element

■ If first element is greater than second element, it will
swap both elements, and then move on to compare
second and the third element, and so on

■ If we have total n elements, then we need torepeat this
process for n-1 times

■ It is known as bubble sort, because with everycomplete
iteration largest element in given array, bubbles up
towards last place or highest index, just like a water
bubble rises up to water surface

BUBBLE SORT EXAMPLE

List

BUBBLE SORT EXAMPLE

BUBBLE SORT - ALGORITHM
□ Step 1: Start

□ Step 2:In Pass 1, A[0] is compared with A[1], A[1] is compared
with A[2], A[2] is compared with A[3] and so on; elements are
swapped if they are not in order. At end of pass1, largest element of
list is placed at highest index of list.

□ Step 3: In Pass 2, A[0] is compared with A[1], A[1] is compared
with A[2] and so on; elements are swapped if theyare not in order.
At end of Pass 2 second largest element of list is placed at second
highest index of list.

□ Step 4: In pass n-1, A[0] is compared with A[1], A[1] is compared
with A[2] and so on; elements are swapped if theyare not in order.
At end of this pass, smallest element of listis placed at first index
of list.

□ Step 5: Stop

BUBBLE SORT - PSEUDOCODE

begin Bubble_Sort(list)
for all elements of list

if list[i]>list[i+1]
swap(list[i], list[i+1])

end if
end for
return list

end Bubble_Sort

MODULE 2

BASICS OF C PROGRAMMING

C PROGRAM

□ Set of instructions that are provided to computer is
known as a program and development of program is
known as programming

□ Programming is a problem-solving activity

□ C was evolved from ALGOL, BCPL (Basic Combined
Programming Language) and B by Dennis Ritchie

□ C is structured, high level, machine independent
language

□ C is a very powerful and widely used language

□ It forms (or is basis for) core of modern languagesJava
and C++

STRUCTURE OF A C PROGRAM

STRUCTURE OF A C PROGRAM

□ Documentation section consists of a set of commentlines
giving name of program, author and otherdetails

□ Single line comment is represented using //

□ Multiple line comment is represented using

/*……………….*/

□ Comment lines are not executable statements and
therefore anything between/*and*/ is ignored by
compiler

□ Link section provides instruction to the compiler to link
functions from system library

STRUCTURE OF A C PROGRAM

□ Definition section defines all symbolic constants

□ There are some variables used in more than one function.
Such variables are called global variables and are
declared in global declaration section that isoutside of all
functions. This section also declares all user defined
functions

□ Every C program must have one main() function section

□ This section contains two parts, declaration part and
executable part

STRUCTURE OF A C PROGRAM

□ C permits different forms of main statements. Theyare

❑ main ()

❑ int main ()

❑ void main ()

❑ main (void)

❑ void main (void)

❑ int main (void)
□ Declaration part declares all variables used in

executable part

□ There is at least one statement in executable part

STRUCTURE OF A C PROGRAM

□ These two parts must appear between opening and
closing braces

□ Program execution begins at opening brace andends at
closing brace

□ Closing brace of main function section is logical endof
program

□ All statements in declaration and executable partsend
with a semicolon(;)

□ Subprogram section contains all user defined
functions that are called in main function

□ All sections, except main function section may be
absent when they are not required

C Program to print Hello World

//This program prints Hello World
#include<stdio.h>
#include<conio.h>
void main()
{

clrscr();

/*printf() function displays content that is
passed between double quotes*/ printf("Hello
World");
getch();

}

C PROGRAM TOKENS

■ Smallest individual unit in a program is known as
tokens. C has following tokens

❑ Keywords

❑ Identifiers

❑ Constants (literals)

❑ Strings

❑ Special Characters

❑ Operators

Keywords

■ These are words whose meaning has already been
explained to C compiler

■ Keywords cannot be used as variable names
■ Also known as “Reserved words”
■ There are only 32 keywords in C

■ Examples:

Identifiers

■ These are user-defined names
■ C identifiers represent name in C program, for

example, variables, functions, arrays, structures, unions,
labels, etc

■ An identifier can be composed of letters such as
uppercase, lowercase letters, underscore, digits, but the
starting letter should be either an alphabet or an
underscore

Rules for constructing C identifiers
□ The first character of an identifier should be either analphabet or

an underscore, and then it can be followed by any of the
character, digit, or underscore(_)

□ It should not begin with any numerical digit

□ In identifiers, both uppercase and lowercase letters are distinct.
Therefore, we can say that identifiers are case sensitive

□ Commas or blank spaces cannot be specified within an identifier

□ Keywords cannot be represented as an identifier

□ Length of identifiers should not be more than 31 characters

□ Identifiers should be written in such a way that it is
meaningful, short, and easy to read

Identifiers Example
□ Example of valid identifiers

❑ Total

❑ Sum

❑ Average

❑ _m _

❑ sum_1

□ Example of invalid identifiers

❑ 2sum (starts with a numerical digit)

❑ int (reserved word)

❑ char (reserved word)

❑ m+n (special character, i.e., '+')

Constants

□ These are data items that never change their valueduring
a program run. These are fixed values

□ They are also called literals

□ Types of Constants are

a) Integer constant: These are whole numbers without any
fractional part. It must have at least one digit and must not
contain any decimal point. It can be either positive ornegative

Examples are 426,+200,-760

b) Character constant: A character constant is one character
enclosed in single quotes. Examples are „A‟, ‟5‟ ,‟=‟ . A
character constant have corresponding ASCII values. For
example ASCII value of „A‟ is 65 and ASCII value of „a‟ is97

Constants

c) String constant: Multiple character constants are treated as
string constant

❑ A string constant is a sequence of characters surrounded by
double quotes

❑ Examples are “abcd”, ”seena”

❑ Each string constant is by default (automatically) added
with a special character ‟\0‟ which makes end of a string

❑ Thus size of a string is Number of characters + null character
(„\0‟)

❑ For example “abc” size is 4. Thus “abc” will be
automatically represented as “abc\0” in memory.‟\0‟ is an
end-of-string marker

Constants

d) Floating constant: Floating constants are also called real
constants. These numbers have fractional part. It mayalso
have either positive or negative. Examples are 17.8,
-13.867

Special Characters

□ Following special symbols are used in C having some special
meaning and thus, cannot be used for some other purpose

[] () {} , ; : * … = #
□ Brackets []: These opening and closing brackets are used as array

element reference

□ Braces {}: Opening and closing curly braces are used to mark start
and end of a block of code containing more than one statement

□ Comma (,): To separate more than one statement

□ Semicolon (;): Used at end of statements for termination

Special Characters

□ Parenthesis () : Are used to indicate function parameters&
function calls

□ Asterick (*): This special symbol is used to create a
pointer variable

□ Assignment Operator (=): For assigning values, this
special symbol is used

□ Preprocessor (#): This you must have seen attachedwith the
header files

Operators

□ An operator is a symbol that tells computer to perform
certain mathematical or logicalmanipulations

□ Operators are used in programs to manipulatedata and
variables

□ An expression is a sequence of operands and operators
that reduces to a single value

Operators

■ C operators are

1. Arithmetic operators

2. Relational operators

3. Logical operators

4. Assignment operators

5. Increment and decrement operators

6. Conditional operators

7. Bitwise operators

8. Special operators

ARITHMETIC OPERATORS

□ C provides all basic arithmetic operators

□ Integer division truncates any fractional part

□ Modulo division operation produces remainder of an integer
division

□ Modulo division operator % cannot be used on floatingpoint
data

□ Example: a – b a + b a * b a / b a % b

Integer Arithmetic

■ When both operands in a single arithmetic expression
are integers, expression is called an integer expression,
and operation is called integerarithmetic

■ Integer arithmetic always yields an integer value

■ If a and b are integers, then for a = 14 and b=4a – b =
10
a + b = 18a
* b = 56
a / b = 3 (decimal part truncated)a %
b = 2 (remainder of division)

Integer Arithmetic

■ During modulo division sign of result is sign of
first operand
–14 % 3 = –2
–14 % –3 = –2
14 % –3 = 2

Real Arithmetic

■ An arithmetic operation involving only real
operands is called real arithmetic

■ % cannot be used with real operandsx =
6.0/7.0 = 0.857143
y = 1.0/3.0 = 0.333333

z = –2.0/3.0 = –0.666667

Mixed mode arithmetic

□ When one of operands is real and other is integer,
expression is called a mixed-mode arithmetic expression

□ If either operand is of real type, then only real operation
is performed and result is always a real number

15/10.0 = 1.5
Whereas 15/10 = 1

RELATIONAL OPERATORS

■ Comparisons can be done with the help of
relational operators

■ Value of a relational expression is either one orzero

■ 10 < 20 is true
■ 20 < 10 is false

LOGICAL OPERATORS

□ An expression which combines two or more relational
expressions, is termed as a logical expression or a compound
relational expression

□ A logical expression also yields a value of one or zero

LOGICAL OPERATORS

ASSIGNMENT OPERATORS

■ Assignment operators are used to assign result ofan
expression to a variable

■ Usual assignment operator is „=‟
■ Example: a=2

It means assign value 2 to variable a

■ Expression a==5 is test or check whether a isequal
to 5

■ Expression a=5 is assign 5 to variable a

ASSIGNMENT OPERATORS

□ In addition, C has a set of „shorthand ‟ assignment
operators of form

v op= exp;
is equivalent to v = v op (exp);

INCREMENT(++) AND
DECREMENT(--)
OPERATORS

□ Operator ++ adds 1 to operand, -- subtracts 1

□ Both are unary operators

□ Takes following form
Prefix Postfix

++m; m++;
--m; m--;

 ++m; is equivalent to m = m+1;
▪ --m; is equivalent to m = m–1
▪ We use increment and decrement statements infor

and while loops extensively

INCREMENT(++) AND
DECREMENT(--)
OPERATORS
□ m = 5;

y = ++m;
In this case, value of y and m would be 6

□ Suppose, if we rewrite above statements asm =
5;

y = m++;
then, value of y would be 5 and m would be 6

□ Prefix operator first adds result to operand and thenresult
is assigned to variable on left

□ Postfix operator first assign value to variable on leftand

then increments operand

CONDITIONAL OPERATOR

■ It is a ternary operator (3 operands)

■ Conditional expression is of form
exp1 ? exp2 : exp3
where exp1, exp2, and exp3 are expressions

■ exp1 is evaluated first
■ If it is true, then exp2 is evaluated and becomevalue

of expression
■ If exp1 is false, exp3 is evaluated and its value

become value of expression

CONDITIONAL OPERATOR

□ For example, consider following statementsa =
10;

b = 15;
x = (a > b) ? a : b;

□ In this example, x will be assigned value of b ie, 15

□ This can be achieved using the if..else statementsif (a

> b)
x = a;
else
x = b;

BITWISE OPERATORS

□ Bitwise operators are used for manipulation ofdata at
bit level

□ These operators are used for testing bits, orshifting
them right or left

BITWISE OPERATORS

■ Bitwise AND Example:
x - - -> 0000 0000 0000 1101
y - - -> 0000 0000 0001 1001

If we execute statementz =
x & y ;
then result would be:
z - - -> 0000 0000 0000 1001

BITWISE OPERATORS

□ Bitwise OR Example:
x - - -> 0000 0000 0000 1101

y - - -> 0000 0000 0001 1001

x |y -> 0000 0000 0001 1101

□ Bitwise Exclusive OR Example:x
- - -> 0000 0000 0000 1101y - - -
> 0000 0000 0001 1001

x ^y -> 0000 0000 0001 0100

BITWISE SHIFT OPERATORS

■ Shift operators are used to move bit patternseither to
left or to right

■ Shift operators are represented by symbols <<and >>
and are used in following form:
Left shift: op << n
Right shift: op >> n

■ op is integer expression that is to be shifted and nis
number of bit positions to be shifted

BITWISE SHIFT OPERATORS

■ x=0100 1001 1100 1011
x << 3 = 0100 1110 0101 1000
x >> 3 = 0000 1001 0011 1001

SPECIAL OPERATORS

□ Comma operator
□ sizeof operator
□ Pointer operators (& and *)
□ Member selection operators (. and –>)

Comma operator

■ Comma operator can be used to link related
expressions together

■ A comma-linked list of expressions are evaluated left
to right and value of right-most expression is value of
combined expression

■ For example, statement value =
(x = 10, y = 5, x+y);
It first assigns value 10 to x, then assigns 5 to y and
finally assigns 15 to value

sizeof operator

□ sizeof is a compile time operator and, when used with an
operand, it returns number of bytes operandoccupies

□ Operand may be variable, constant or data type

□ Example:
sum=23;
m=sizeof(sum)

It returns number of bytes variable sum
occupies, ie, 4 bytes

n=sizeof(int)
It assigns size of integer data type 2 to n

DATA TYPES

■ Data type is a classification identifying one of various
types of data. There are three classes of data types

❑ Fundamental (primary) Data types

❑ Derived Data types

❑ User defined data types

Fundamental Data types

Fundamental data types

■ int : for integers (2 byte memory space allocates in
memory)

■ char: for characters(1 byte memory space allocates in
memory)

■ float: for floating point numbers(4 byte memory space
allocates in memory)

■ double: for double precision floating point numbers(8
byte memory space allocates in memory)

■ void: for empty set of values and non-returning
functions. The void type has no value

Fundamental data types

■ Size and Range of Basic Data Types

Fundamental data types

Integer types Floating-point types

Derived data types

□ Derived data types are constructed from fundamental
data types. They are

❑ Arrays: An array is a collection of values of same type
that are referenced by a common name

❑ Functions: A function is a named part of a program
that can be invoked from other part of program

❑ Pointer: A pointer is a variable that holds memory
address. This address is usually location of another
variable in memory

Derived data types

❑ Constant: keyword const can be added todeclaration of
an object to make that object a constant rather than a
variable. Thus, variable of named constant cannot be
altered during programrun

Syntax
const type name = value;
Example: const int a=10;

User defined data types

▪ C allows programmers to define their identifier that
would represent an existing data type. They are

❑ typedef

❑ structure

❑ enumeration

❑ union

typedef

■ It allows users to define an identifier that would
represent an existing data type.

■ Syntax
typedef type identifier;

■ Here, type refers to an existing data type and
identifier refers to new name given to data type

■ Example: typedef int units;
typedef float marks;

Here, units symbolize int and marks symbolizes float.
They can belater used to declare variables as follows

typedef

units batch1, batch2;
marks name1,name2;

batch1 and batch2 are declared as int variables and
name1 and name2 are declared as floating point
variables

■ Advantage of typedef is that we can create meaningful
data type names for increasing readability of program

Enumeration

□ Enumerated data type (also called enumeration or enum)
provides a way for attaching names to numbers there by
increasing comprehensibility of code. It has following
form

enum identifier {value1,value2,…….,value n};
□ identifier is a user defined enumerated data type which

can be used to declare variables that can have one of
values enclosed with in the braces(known as enumeration
constant)

Enumeration

□ Example:

❖ enum week_day {Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday};
Here an enumerated data type week_day hasbeen
defined

❖ week_day day1, day2;
Here variables created of type week_day

❖ day1=Wednesday;

It is correct,day1 can have any of above given 7
values

❖ day2=7;
It is incorrect, no other value can be assigned

Enumeration

■ Enumerated means all the values are listed

■ enum specifier automatically enumerates a list of
words by assigning them values 0, 1, 2, 3, and so
on

■ Compiler automatically assigns integer digits
beginning with 0 to all enumeration constants

■ That is enumeration constant Monday is assigned 0,
Tuesday is assigned 1 and so on

Enumeration

□ We can give values explicitly (changing defaultoriginal
values) by following way

enum day {Monday=1, Tuesday, Wednesday=6,Thursday,
Friday, Saturday, Sunday};
Now, Monday=1, Tuesday=2, Wednesday=6,
Thursday=7, Friday=8 etc.

VARIABLES

□ A variable is a data name that may be used tostore
a data value

□ A variable may take different values at different
times during execution

□ Each variable has a specific storage location in
memory where its value is stored

□ Variables are called symbolic variables becausethese
are named

VARIABLES

□ There are two values associated with a symbolic
variable

❑ Data value: stored at some location in memory.This
is sometimes referred to as a variable‟s r- value

❑ Location value: This is address in memory at which
its data value is stored. This is sometimes referred
to as variable‟s l-value

VARIABLES

❑ r-value of A=10 and l-value of A=1052

❑ r-value of c=25 and l-value of c=1055
□ Whenever we use assignment operator, expression to left

of an assignment operator must be an l- value. That is, it
must provide an accessible memory address where data
can be written to

Variable Declaration

□ A declaration associates a group of variables with a
specific data type. Declaration of variables must be
done before they are used in program

□ Syntax

Data_ type variable_ name;

□ Example: int a;

float a, b, c;
char sex;

Variable Initialization

■ Process of giving initial values to variables is called
initialization

■ Example: int x=10;

float n=22.889;
char answer=‟y‟;

Expression

□ An expression represents a single data item, suchas
number or a character

□ Expression can also represent logical conditions

□ Example: x+y

y=z
x=y+z

□ An expression statement consists of an expression
followed by a semicolon

□ For example, following two expression statements cause
value of expression on right of equal sign to be assigned
to variable on left

Expression

x=5;
x=y+z;

□ A compound statement consists of several individual
statements enclosed within a pair ofbraces ie; {and}

PRECEDENCE OF
ARITHMETICOPERATORS
□ While executing an arithmetic statement, which has two

or more operators, we may have some problems as to
how exactly does it get executed

□ For example, does the expression 2*x-3*y correspond to
(2x)-(3y) or to 2(x-3y)?

□ Similarly, does A / B * C correspond to A / (B * C) or to
(A / B) * C?

□ To answer these questions satisfactorily one has to
understand the „hierarchy‟ of operations

PRECEDENCE OF ARITHMETIC
OPERATORS

□ Priority or precedence in which operations in an
arithmetic statement are performed is calledhierarchy of
operations

□ Hierarchy of commonly used operators is shown below

PRECEDENCE OF ARITHMETIC
OPERATORS

□ Example: Determine hierarchy of operations and

evaluate following expression?
i = 2 * 3 / 4 + 4 / 4 + 8 - 2 + 5 / 8

□ Stepwise evaluation of this expression is shown
below:

PRECEDENCE OF ARITHMETIC
OPERATORS

□ If there are more than one set of parentheses, operations
within innermost parentheses would be performed first,
followed by operations within secondinnermost pair and so
on

□ We must always remember to use pairs of parentheses

□ Whenever parentheses are used, expressions within
parentheses assume highest priority

□ If two or more sets of parentheses appear one after another
as shown above, expression contained in left most set is
evaluated first and right most set in last

PRECEDENCE OF ARITHMETIC
OPERATORS

□ Evaluate expression9

-12/(3+3)*(2-1)

CONSOLE INPUT/OUTPUT

OPERATIONS
1. getchar()

□ getchar() function reads a single character from
standard input

□ It takes no parameters and its returned value isinput
character. It has following form

variable name=getchar();
□ Example:

char c;

printf(“Enter a character”);
c=getchar();

CONSOLE
INPUT/OUTPUT
OPERATIONS

□ Second line causes a single character to be entered
from standard input device and then assigned to c

□ Variable name has been declared as „char‟ type

2. putchar()
□ It displays a single character on screen

□ This function takes one argument, which is
character to be sent

□ It also returns this character as its result

CONSOLE
INPUT/OUTPUT
OPERATIONS

□ General form is

putchar(variable-name);
□ Example:

char ans=‟y‟
putchar(ans);

3. gets()
□ It receives a string from keyboard

CONSOLE
INPUT/OUTPUT
OPERATIONS
4. puts()

□ Outputs a string to screen

□ Example:

char vehicle [40];

Printf(“Enter your vehicle name”);
gets (vehicle);
puts (vehicle);

□ These lines use gets and puts to transfer lineof
text into and out of computer

CONSOLE
INPUT/OUTPUT
OPERATIONS
5. printf()
■ For outputting result we use printf() function

■ Syntax
printf (“formatted string”, variable);

■ Example:
a=3.5;
printf (“%f”,a);

printf (“WELCOME MY FRIEND”);

CONSOLE
INPUT/OUTPUT
OPERATIONS

■ Formatted strings are

1. %d integers

2. %f float

3. %c character

4. %s string
7. %u unsigned integer

9. %i signed decimal integer

10. %p display a pointer

11. %% prints a percent sign (%)

CONSOLE
INPUT/OUTPUT
OPERATIONS

6. scanf()
□ It can read data from keyboard

□ scanf () means “scan formatted”

□ Syntax

scanf (“formatted string”, addressed variable);
□ Example

scanf (“%d”, &num1);

scanf(“%d”,&num2);
scanf(“%d%d”,&num1,&num2);

MODULE 3

ARRAYS & STRINGS

ARRAYS

□ An array is a fixed size sequenced collection ofelements
of same data type

□ An array is a collection of variables of same datatype
that are referenced by a common name

□ Array name acts as a pointer to zeroth element ofarray

□ TYPE OF ARRAYS

1) One dimensional arrays

2) Two- dimensional arrays

3) Multi- dimensional arrays

ONE DIMENSIONAL ARRAY

■ Like other variables an array needs
to be declared so thatcompiler will
know what kind of an array and
how large an arraywe want

■ General syntax is
type array_ name [size];

■ Eg: int marks [100];

Computer reserves 100
contiguous
shown

storage locations as

ONE DIMENSIONAL ARRAY

int arr[6];
Computer reserves 6 contiguous storage locations as shown

ONE DIMENSIONAL ARRAY

■ An array is a collection of similar elements
■ First element in the array is numbered 0, so last

element is 1 less than size of array

■ An array is also known as a subscripted variable
■ Element numbers in [] are called index or

subscript
■ Before using an array its type and dimension mustbe

declared

■ However big an array its elements are alwaysstored in
contiguous memory locations

ONE DIMENSIONAL ARRAY

■ C language treats character string, simply as array of
characters

■ Size in character string represents maximumnumber
of characters that string can hold

■ For example char name[10];

■ Declares name as a character array (string) variable that
can hold a maximum of 10 characters including null
character

ONE DIMENSIONAL ARRAY

Entering Data into an Array
■ Here is section of code that places data into an

array:
■ printf ("\n Enter 6 marks ") ;for

(i = 0 ; i <= 5 ; i++)
{

scanf ("%d", &marks[i]) ;
}

■ First time through loop, i has a value 0, so scanf ()
function will cause value typed to be stored in the array
element marks [0], first element of array. This
process will be repeated until i become 49

Printing Data from an Array

■ Here is section of code that displays data from an
array:

■ printf ("\n Marks are") ; for
(i = 0 ; i <= 5 ; i++)
{

printf ("%d", marks[i]) ;
}

■ First time through loop, i has a value 0, so printf ()
function will display value stored at array index 0 ie,
element marks [0], first element of array. This process
will be repeated until i become 49

INITIALIZATION OF 1D ARRAY

■ An array can be initialized at either of following
stages

• At compile time

• At run time

1) Compile time initialization:
Syntax type array_name[size]= {list of values};Eg:
int number [3] = {9, 5, 2};

float total [5] = {0.0, 15.75,-10.9};

INITIALIZATION OF 1D ARRAY

■ Size may be omitted. In such cases, compilerallocates
enough space for all initialized elements
■ Eg: int counter [] = {1, 1, 1, 1};

■ Character arrays may be initialized in a similarmanner

■ Eg: char name [] = {„j‟,‟o‟,‟h‟,‟n‟,‟\0‟};
■ If we have more initializers than declared size,compiler

will produce an error
■ Eg: int number [3] = {10, 20, 30, 40}; will not

work. It is illegal in C

INITIALIZATION OF 1D ARRAY

2) Run time initialization:
We can use scanf () to initialize an array at runtime

Eg: int x [25],i;

for (i=0;i<25;i++)
scanf(“%d”,&x[i]);

LINEAR SEARCH

■ Linear search is simplest search algorithm and often
called sequential search

■ In this type of searching, we simply traverse list
completely and match each element of list with item
whose location is to be found

■ If match found then location of item is returned
otherwise algorithm return NULL

LINEAR SEARCH EXAMPLE

LINEAR SEARCH EXAMPLE

LINEAR SEARCH EXAMPLE

BUBBLE SORT

■ Sorting refers to ordering data in an increasing or
decreasing fashion according to some linearrelationship
among data items

■ Bubble sort is a simple sorting algorithm

■ This sorting algorithm is comparison-basedalgorithm in
which each pair of adjacent elements is compared and
the elements are swapped if they are not in order

■ This algorithm is not suitable for large data sets as its
average and worst case complexity are of O(n²) where n
is the number of items

BUBBLE SORT

■ If given array has to be sorted in ascending order, then
bubble sort will start by comparing first element of array
with second element

■ If first element is greater than second element, it will
swap both elements, and then move on to compare
second and the third element, and so on

■ If we have total n elements, then we need torepeat this
process for n-1 times

■ It is known as bubble sort, because with everycomplete
iteration largest element in given array, bubbles up
towards last place or highest index, just like a water
bubble rises up to water surface

BUBBLE SORT EXAMPLE

List

BUBBLE SORT EXAMPLE

CHARACTER ARRAYS & STRINGS

■ A string is a sequence of characters defined
between double quotation marks
Eg: printf (“WELL DONE”);

Declaring and initializing
■ Strings are declared as an array of characters

■ Syntax is:

char string_name[size];
Eg: char city [10];

char name[30];

CHARACTER ARRAYS & STRINGS

■ When compiler assigns a character string to a character
array, it automatically supplies a null character (\0) at
end of string

■ Therefore size of a string
Size = maximum number of characters in string + one

■ Character arrays can be initialized when they are
declared

CHARACTER ARRAYS & STRINGS

■ Initialization can be in either of following two
forms
char city [9] =”NEW YORK”;
char city[9]={„N‟,‟E‟,‟W‟,‟ ‟,‟Y‟,‟O‟,‟R‟,‟K‟,‟\0‟};

■ Following format is also valid in C

■ char string[]= {„N‟,‟E‟,‟W‟,‟ ‟,‟Y‟,‟O‟,‟R‟,‟K‟,‟\0‟};

READING STRING FROM KEY BOARD
1. Using scanf() function

char address[10]; scanf
(“%s”,address);

■ In case of character arrays, ampersand (&) is not
required before variable name

■ Problem with scanf () function is that it terminatesits
input on the first white space it finds

■ If we typed NEW YORK then only string “NEW” will be
read in to array address. Address array is created in
memory as shown below

READING STRING FROM KEY BOARD

■ Unused locations are filled with garbage value
■ If we want the entire line “NEW YORK”, we use

two character arrays of size

char ad1[5],ad2[5];
scanf (“%s%s”,ad1,ad2);

■ • Then assign the string “NEW” to ad1 and“YORK”
to ad2.

■ scanf () is not capable of receiving multi-word
strings

READING STRING FROM KEY BOARD

■ Way to avoid this limitation is by using function
gets ()

■ It does not skip white space
■ Usage of functions gets() and its counterpartputs() is

shown below

STRING HANDLING FUNCTIONS

■ String conversion functions are stored in header file
<string.h>

1. strlen - Finds length of a string

2. strlwr - Converts a string to lowercase

3. strupr - Converts a string to uppercase

4. strcat - Appends one string at the end of another

5. strcpy - Copies a string into another

6. strcmp - Compares two strings

7. strdup - Duplicates a string

8. strrev - Reverses string

strlen ()

■ This function counts number of characters presentin a
string

Output
string = Newyear length = 7
string = Humpty Dumpty length = 13

strcpy()
■ This function copies contents of one string into

another

Output
source string = Soniya
target string = Soniya

strcat()

■ This function concatenates source string at end oftarget
string

Output
source string = Brother target
string = HelloBrother

strcmp()

■ This function compares two strings to find out whether
they are same or different

■ Two strings are compared character by character until
there is a mismatch or end of one of strings is reached,
whichever occurs first

■ If two strings are identical, strcmp() returns a value
zero

■ If they‟re not, it returns numeric difference between
ASCII values of first non-matching pairsof characters

strcmp()

Output

0 4 - 4

□ In first call two strings are
identical “Jerry” and “Jerry”
and value returned bystrcmp
() is zero

□ In second call, result is 4,
which is numeric difference
between ASCII value of „J‟
and ASCII value of „F‟

□ In third call, result is -4, which
is numeric difference between
ASCII value of „F‟ and ASCII
value of „J‟

<ctype.h>

□ Character function use ctype.h header file. It is used for
character testing and conversion functions

• isalpha (c): Determine if argument is alphabetic. It
return non zero value if true, 0 otherwise. Return type
is int

• isdigit (c): Determine if argument is a decimal digit. It
return non zero value if true, 0 otherwise. Return
type is int

• islower (c): Determine if argument is lower case. It
return non zero value if true, 0 otherwise. Return type
is int

<ctype.h>

• isupper (c): Determine if argument is upper case. It
return non zero value if true, 0 otherwise.Return type is
int

• tolower (c): Convert letter to lower case. Return type is
int

• toupper (c): Convert letter to upper case. Return type is
int

Example to print length of a string using
strlen() library function and gets

Example to print length of a string
using gets() and null character

TWO DIMENSIONAL ARRAYS

□ Two-dimensional array is also called a matrix

□ Two dimensional arrays are declared as followstype
array_name [row-size] [column-size];

□ Example:

OR

int stud[4][2] = { 1334, 18, 1812, 44, 1004, 99, 1112, 10 } ;

TWO DIMENSIONAL ARRAYS

□ It is important to remember that while initializing a 2-D
array it is necessary to mention second (column)
dimension, whereas first dimension (row) is optional

□ Thus declarations,
int arr[2][3] = { 52, 30, 23, 55, 56, 85 } ;
int arr[][3] = { 52, 30, 23, 55, 56, 85 } ;

are perfectly acceptable

□ Whereas,
int arr[2][] = { 52, 30, 23, 55, 56, 85 } ;

int arr[][] = { 52, 30, 23, 55, 56, 85 } ;
would never work

Memory
Array

Map of a 2-Dimensional

□ Array elements have been stored row wise and
accessed row wise

□ We can access array elements column wise as well

□ Traditionally, array elements are being stored and
accessed row wise

Memory Map of a 2-Dimensional
Array
□ Array arrangement shown below is only conceptually

true

□ This is because memory doesn‟t contain rows and
columns

□ In memory whether it is a one-dimensional or a two-
dimensional array, elements are stored in one
continuous chain

□ Arrangement of array elements of a two- dimensional
array in memory is shown in figure

MODULE 4

WORKING WITH FUNCTIONS

FUNCTION

□ A function is a named part of a program that can be
invoked from other part of program

□ That is, a function is a self-contained block ofstatement
that performs a coherent task of some kind

□ Every C program can be thought of as a collection of
these functions

□ A function can be classified in to two categories

FUNCTION

1. Library functions: These are pre-defined. Library
functions are not required to be written by us

■ Examples are printf () ,scanf (), sqrt (), cos (), strcat ()
etc.

■ This library of functions is present on disk and is
written for us by people who write compilers for us

■ Almost always a compiler comes with a library of
standard functions

■ Procedure of calling both types of functions is exactly
same

FUNCTION

2. User defined functions: This type of functions has to
be developed by user at time of writing a program

■ main () is an example of user defined function

FUNCTION

□ A function has three parts

1. Function declaration/prototype
Synax: type function_name (argument list);

2. Function call
Syntax: function_name(argument list);

3. Function definition

FUNCTION

FUNCTION HEADER

□ type function-name (parameter list) is called asfunction
header

□ Statement with in opening and closing braces are
function body

□ Semicolon is not used at end of function header
□ A function must be declared before main () function
□ Function calling is done with in main () function
□ Parameter is also called as arguments

A SIMPLE FUNCTION

A SIMPLE FUNCTION

□ Here, main() itself is a function and through it weare
calling function message()

□ main() becomes calling function, whereas
message() becomes called function

□ Any C program contains at least one function
□ If a program contains only one function, it must be

main ()
□ If a C program contains more than one function, then

one (and only one) of these functions must be main
(), because program execution always begins with
main ()

A SIMPLE FUNCTION

□ After each function has done its thing, controlreturns to
main ()

□ When main () runs out of function calls, programends
□ C program is a collection of one or more functions
□ A function gets called when function name isfollowed

by a semicolon
□ A function can call itself. Such a process is called

‘recursion’
□ A function can be called from other function, but a

function cannot be defined in another function

Small Program Using return Statement

Formal parameter v/s Actual
parameter

□ Formal Parameter : A variable appear in theprototype
of the function or method

□ Actual Parameter : Variable or expression
corresponding to a formal parameter that appears in
function or method call in calling environment

□ In above example: a and b are actual parameters
x and y are formal parameters

return Statement

□ return statement serves two purposes:
1. On executing return statement it immediatelytransfers

control back to calling program

2. It returns value present in parentheses afterreturn, to
calling program

□ In above program value of sum of three numbers isbeing
returned

□ All the following are valid return statements
return (a) ; return
(23) ; return (
16.94) ;return ;

return Statement

□ If we want that a called function should not return any
value, in that case, we must mention so by using
keyword void as shown below
void display()

{
printf ("Hello every one") ;

}
□ In absence of return statement, closing brace actas a

void return

Declarations

■ int a,b; - Variable declaration
■ int a[20]; - Array declaration (One Dimensional)
■ int a[4][4]; - Array declaration (Two Dimensional)

■ char a[25]; - String declaration

Function Declarations

■ void add(int,int);

■ int add (int,float);
■ float add(float,float);
■ void add ();

Example for Function without argument
and return value

Example for Function without argument and
with return value

Example for Function with argument and

without return value

Example for Function with argument and

with return value

PASS BY VALUE (CALL BY VALUE)

□ In this method ‘value’ of each of actual arguments
(arguments in function call statement) in calling
function is copied into corresponding formalarguments
(arguments in function definition section) of called
function

□ Function creates its own copy of argument values and
then uses them

□ With this method changes made to the formalarguments
in called function have no effect on values of actual
arguments in calling function

□ That is, any change in formal parameter is not reflected
back to actual parameters

PASS BY VALUE (CALL BY VALUE)

Note that values of a and b remain
unchanged even after exchanging
values of x and y

since at a time only one element is being
passed, this element

collectedin an ordinary
is
integer

variable m, in function display()

PASSING SINGLE 1D
ARRAYELEMENT TO A
FUNCTION

PASSING COMPLETE 1D ARRAY TO

AFUNCTION
#include<stdio.h>

float findAverage(int marks[])

{
int i, sum = 0;
float avg;
for (i = 0; i <= 4; i++) {

sum += marks[i];

}
avg = (sum / 5);
return avg;

}
void main()
{

float avg;
int marks[] = {99, 90, 96, 93, 95};
avg = findAverage(marks); // name of the array is passed as argument
printf("Average marks = %f", avg);

}

PASSING A MULTI-

DIMENSIONALARRAY TO A

FUNCTION

RECURSION
□ A function is called ‘recursive’ if a statement within bodyof a

function calls same function

□ A function can call itself. Such a process is called‘recursion’
EXAMPLE
□ Factorial of a number is product of all integers between 1and

that number
□ For example, 4 factorial is 4 * 3 * 2 * 1

□ This can also be expressed as 4! = 4 * 3! Where ‘!’
stands for factorial

□ Thus factorial of a number can be expressed in form ofitself

□ Hence this can be programmed using recursion

RECURSION OUTPUT

Enter the number whose factorial you want
to calculate?5
Factorial = 120

Function call: fact(5)

5!= 1*2*3*4*5 = 120

STORAGE

□ Storage classes
variable’s location

□ Variable’s storage class tells us
Where variable
What will be initial
not specifically
What is scope
of variable would

What is life of
variable exist?

 CLASSES
classes provide information

location and visibility
Variable’s storage class tells us

variable would be stored?
What will be initial value of variable, if initial

specifically assigned?
scope of variable; i.e. in which

would be available?

of variable; i.e. how long
exist?

information about

initial valueis

which functionsvalue

 would the

STORAGE CLASSES

□ Scope of variable determines over what region of
program a variable is actually available for use

□ Visibility refers to accessibility of a variable from
memory

□ Longevity refers to period during which a variable
retains a given value during execution of a program

□ Life time of a variable is duration of time in which a
variable exists in memory during execution

STORAGE CLASSES

■ There are four storage classes in C:
1. Automatic
2. Register
3. Static
4. External

Automatic Storage Class

□ A variable declared inside a function by default,
automatic

□ They are created when function is called anddestroyed
automatically when function is exited

□ We can write explicitly as auto int number;

Static Storage Class

□ Static variable initialized once when program is
compiled

□ Value of static variable cannot change

static int x;

AUTO & STATIC – A COMPARISON

External Storage Class

□ External variable’s scope is global, not local
□ External variables are declared outside all functions,

yet are available to all functions that care to use
them

□ We can write explicitly as extern int y;

External Storage Class

External Storage Class

Register Storage Class

□ We can tell compiler that a variable should be kept in one
of machine’s registers, instead of keeping inmemory

□ Register access is faster than memory access

register int count;

STRUCTURE

□ A structure is a collection of variables of differentdata
types that are referenced by a common name

□ A structure contains a number of data types
grouped together

□ These data types may or may not be of same type

Structure declaration Syntax

STRUCTURE

□ Once new structure data type has been defined one or
more variables can be declared to be ofthat type

is same as

Structure Initialization
□ Like variables and arrays, structure variables canalso

be initialized where they are declared
□ Closing brace in structure type declaration mustbe

followed by a semicolon

ACCESSING STRUCTURE

ELEMENTS
□ In arrays we can access individual elements of an array

using a subscript. Structures use a different scheme

□ They use a dot (.) operator

□ So to refer to pages of structure defined in sample
program we have to use,

b1.pages

□ Similarly, to refer to price we would use,
b1.price

□ Note that before dot there must always be a structure
variable and after dot there must always be a structure
element

ASSIGNING VALUES TO

STRUCTUREELEMENTS

ARRAY OF STRUCTURES
□ Array of structures: an array of structure data typeswhich

themselves are a collection of dissimilar data types

ARRAY OF STRUCTURES

STRUCTURE ASSIGNMENT

□ Values of a structure variable can be assigned to
another structure variable of same type using
assignment operator

□ It is not necessary to copy structure elementspiece-meal

□ Obviously, programmers prefer assignment to piece-
meal copying

□ This is shown in following example

STRUCTURE ASSIGNMENT

PASSING STRUCTURE TO A

FUNCTION

UNION

■ Syntax is same as structures

■ In structure each member has its own storage location,
whereas all members of a union use samelocation

■ It can handle only one member at a time
■ Union may be used in all places where a structureis

allowed
■ To access a union member, we can use samesyntax that

we use for structure members

■ That is,
code.m code.x code.c all are valid

UNION

□ Compiler allocates a piece of storage that is large
enough to hold largest variable type in union

□ In below declaration, member x requires 4 byte
memory

□ So only 4 byte memory is allocated

END….

MODULE 5

POINTERS & FILES

POINTER

□ A pointer is a variable that holds memory address of
location of another variable in memory

□ It is a derived data type in C

□ Consider declaration,

int i = 5 ;
This declaration tells C compiler to:

■ Reserve space in memory to hold integer value

■ Associate name i with this memory location

■ Store value 5 at this location

POINTER

■ We may represent i’s location in memory by
following memory map

■ We see that computer has selected memorylocation
65234 as place to store value 5

POINTER

■ Important point is, i’s address in memory is a number.
We can print this address number through following
program:

■ & used in this statement is C’s address of operator.
Expression &i returns address of variable i

■ %u is a format specifier for printing an unsigned integer

POINTER

□ Other pointer operator available in C is ‘*’,
called ‘value at address operator’. It gives value
stored at a particular address

□ ‘Value at address’ operator is also called
‘indirection’ operator or ‘pointer operator’

POINTER

□ Expression &i gives address of variable i. This address
can be collected in a variable, by saying,

j = &i;

□ But remember that j is not an ordinary variable like any
other integer variable. It is a variable that contains
address of other variable (i in this case). Since j is a
variable compiler must provide it space in memory

i’s value is 5 and j’s value is i’s address

POINTER

■ we can’t use j in a program without declaring it. And
since j is a variable that contains address of i, it is
declared as, int *j ;

■ This declaration tells compiler that j will be used to
store address of an integer value. In other words j
points to an integer

■ Let us go by meaning of *. It stands for ‘value at
address’

■ Thus, int *j would mean, value at address contained in j
is an int

POINTER EXAMPLE

POINTER EXAMPLE

□ Look at following declarations,

int *alpha ;

char *ch ;

float *s ;

Here, alpha, ch and s are declared as pointer variables, i.e.
variables capable of holding addresses

▪ Addresses (location nos.) are always going to be whole
numbers; therefore pointers always contain whole numbers

▪ Declaration float *s does not mean that s is going to contain a
floating-point value. What it means is, s is going to contain
address of a floating-point value

▪ Similarly, char *ch means that ch is going to contain address
of a char value

DECLARING POINTER VARIABLES

■ Syntax
■ data_type *pointer_name;

■ Eg: int *p;

INITIALIZATION OF A

POINTERVARIABLE
□ Process of assigning address of a variable to a

pointer variable is known as initialization
int quantity;
int *p; /* declaration*/
p=&quantity; /* initialization*/

□ We can also combine initialization with

declaration
□ Only requirement here is that variable quantity

must be declared before initialization takes place
int*p=&quantity;

INITIALIZATION OF A POINTER
VARIABLE
□ Consider following example:

int quantity,*p, n;
quantity =179;
p=&quantity; n=*p;

□ Last line contains indirection operator *. Whenoperator
* is placed before a pointer variable inan expression,
pointer returns value of variable of which pointer value
is address

□ That is, *p returns value of variable quantity,because p
is address of quantity. Thus value of n would be 179

POINTER TO A POINTER (Chain
of Pointers)

□ It is possible to make pointer to point to another
pointer

□ Thus, we now have a pointer that contains another
pointer’s address

□ Observe how variables p2 have been declared,int x,
*p1, **p2 ;

□ Here, x is an ordinary int, p1 is a pointer to an int (often
called an integer pointer), whereas p2 is a pointer to an
integer pointer

□ Representation **p2 is called multiple indirection

POINTER TO A POINTER (Chain
of Pointers)

POINTER INCREMENTS & SCALE
FACTOR

□ Expression p1++; will cause pointer p1 to point tonext
value of its type

□ If p1 is an integer pointer with an initial value say 2800,
then after operation p1=p1+1, value of p1 will be 2802,
and not 2801

□ When we increment a pointer its value is incremented
by length of the data type that its point to. This length
called scale factor

□ Following operations can be performed on a pointer:

POINTER INCREMENTS & SCALE
FACTOR

□ Addition of a number to a pointer
int i = 4, *j, *k ; j
= &i;
j = j + 1; j
= j + 9;k =
j + 3;

□ Subtraction of a number from a pointer
int i = 4, *j, *k ;j
= &i;
j = j - 2;

j = j - 5;
k = j - 6;

Subtraction of one pointer from
another

OUTPUT
8 36

Comparison of two pointer
variables

OUTPUT
The two pointers point to the same location

Comparison of two pointer
variables

□ Do not attempt following operations on
pointers... they would never work out

(a) Addition of two pointers

(b) Multiplication of a pointer with a constant

(c) Division of a pointer with a constant

POINTER & ARRAY

□ Array name gives address of first element of array

POINTER & ARRAY

POINTER & ARRAY

□ Suppose we have an array
num [] = {24, 34, 12, 44, 56, 17}

POINTER & ARRAY

PASS BY REFERENCE (CALL BY
REFERENCE)

□ In this method addresses of actual arguments in calling
function are copied into formal arguments of calledfunction

□ That is same variables value can be accessed by any of two
names: original variables name and reference name

□ We are actually passes address

□ Note that this program manages to exchange values ofa and
b using their addresses stored in x and y

□ That is, any change in formal parameter is reflectedback
to actual parameters

□ Usually in C programming we make a call by value

PASS BY REFERENCE (CALL BY
REFERENCE)

NULL POINTER

□ It is always a good practice to assign a null value to a
pointer variable in case you do not have exactaddress to
be assigned

□ This is done at time of variable declaration

□ A pointer that is assigned NULL is called a null pointer

□ Null pointer is a constant with a value of zero defined
in several standard libraries

NULL POINTER

FILE MANAGEMENT

□ A file represents a sequence of bytes on diskwhere a
group of related data is stored

□ File is created for permanent storage of data

□ It is a readymade structure

□ A file is a place on disk where a group of relateddata
is stored

FILE OPERATIONS

1. Creation of a new file

2. Writing to a file

3. Opening an existing file

4. Reading from a file

5. Moving to a specific location in a file (seeking)

6. Closing a file

FUNCTIONS FOR FILE HANDLING

General format for declaring and
opening a file

FILE *fp;
fp=fopen (“filename”,”mode”);

■ fp is a pointer to data type FILE
■ This pointer contains all information about file

Trouble in Opening a File

□ It is important for any program that accesses disk files
to check whether a file has been opened successfully
before trying to read or write to file

□ If file opening fails due to any of several reasons,
fopen() function returns a value NULL

□ NULL is defined in “stdio.h” as
#define NULL 0

Trouble in Opening a File

Program to read a file and displayits
contents on screen

COUNTING CHARACTERS, TABS
and SPACES

COUNTING CHARACTERS, TABS
and SPACES

FILE-COPY PROGRAM

FILE-COPY PROGRAM

fprintf () and fscanf ()
■ fprintf and fscanf can handle a group of mixeddata

simultaneously
■ General form is

fprintf (fp, “control string”, list);
fp is a file pointer associated with a file that hasbeen
opened for writing

Eg: fprintf (f1,”%s%d%f”, name, age, 7.5);
■ General format of fscanf is fscanf

(fp, ”control string”, list);list
means address of variables
Eg: fscanf(f2,”%s%d”,item,&quantity);

FILE OPENING MODE

Storing Employee information

Storing Employee information

feof()

□ C provides feof() which returns non-zero value onlyif
end of file has reached, otherwise it returns 0

□ For example, consider following C program to print
contents of file test.txt on screen

□ In program, returned value of getc() is comparedwith
EOF first

□ Then there is another check using feof()

□ By putting this check, we make sure that program prints

“End of file reached” only if end of file is reached

□ If getc() returns EOF due to any other reason, then
program prints “Something went wrong”

feof()

fseek() function

□ fseek() function is used to set file pointer to the
specified offset

□ It is used to write data into file at desired location

□ Syntax: int fseek(FILE *stream, long int offset, int
whence)

□ There are 3 constants used in fseek()

□ Function for whence:
SEEK_SET - beginning of file
SEEK_CUR - current position
SEEK_END - end of file

fseek() function

rewind()

□ rewind() function sets file pointer at beginning of
stream

□ It is useful if you have to use stream many times

□ Syntax: void rewind(FILE *stream)

rewind()

ftell()

□ ftell() in C is used to find out position of file pointerin
file with respect to starting of file

□ Syntax of ftell() is: ftell(FILE *pointer)

□ Consider below C program

□ File taken in example contains following data:
“Someone over there is calling you. We are going for
work. Take care of yourself.” (without quotes)

□ When fscanf statement is executed word “Someone” is
stored in string and pointer is movedbeyond “Someone”

□ Therefore ftell(fp) returns 7 as length of “someone”

ftell()

Output :
7

END…..

